人間の行動・意思決定を含むシステムに対する制御理論の開拓と展開

-- Views

February 18, 26

スライド概要

RACOT研究会でお招き頂いたときの講演資料です。
http://www.donald.ai.kyutech.ac.jp/~sebe/RACOT/index.html

profile-image

制御工学の研究者です。

シェア

またはPlayer版

埋め込む »CMSなどでJSが使えない場合

ダウンロード

関連スライド

各ページのテキスト
1.

RACOT研究会 人間の行動・意思決定を含むシステム に対する制御理論の開拓と展開 井上正樹 慶應義塾大学 謝辞: JST CREST EMS領域、科研費若手B 2019年12月21日

2.

2 自己紹介と宣伝 (3ページ)

3.

自己紹介 ➢ 2004年4月~ 学生 – 大阪大学(機械工学) ➢ 2012年4月~ ポスドク – FIRST 最先端数理モデルプロジェクト & 東京工業大学 ➢ 2014年4月~ 助教 – 慶應義塾大学 理工学部 物理情報工学科 ➢ 2018年4月~ 専任講師 – 研究室を立ち上げ(PI) – 現在8名の学生 3

4.

宣伝1:これまでの研究 ➢ 2004年4月~ 学生 – ディスクリプタシステムのロバスト制御([Automatica,15]など) – 時変システムの収束性解析([CDC,11]など) ➢ 2012年4月~ ポスドク – ロバスト分岐解析([IJBC,13,15], [IJRNC,15]など) ➢ 2014年4月~ 助教 – 消散不等式による分散設計([Automatica,19], [TAC,20]など) – 事前情報付きのシステム同定([Automatica,19], [IJC,18]など) – 企業との共同研究: 自動車,航空機,電池,音響,風力(成果?...) 色々やってる… 4

5.

宣伝2:最近の研究 5 ➢ 2018年4月~ 専任講師 興味があれば後ほど 1. モデル予測制御器の“近似” • instant MPC(求解アルゴリズムで制御器を置換) • MPCの安定性保証付きの学習 with 瀬部先生 2. 大規模非線形系に対する目標値設計 3. 本日の話(中心テーマ) (1) MPC=陰関数(KKT条件) (2) 目標依存で性能変化 + + ー ー 動的KKTと学習モデルによる近似 電力系統や航空管制を想定

6.

本日の話 人間の行動・意思決定を含むシステムに対する制御理論 + ー 狙い: フィードバック制御問題の 新しい標準形を提案!(したい) + いつもの ー

7.

本日の講演内容 ➢導入:Human-in-the-loopシステム どんなことを考えているか? ➢提案:弱い制御の問題設定と解法 ➢展開:エネルギー管理と航空管制 ➢今後:農業生産管理? 7

8.

手動制御と自動制御 8 完全手動制御 完全自動制御 Carnny 産業革命 以前 超未来 (t → ∞) ナビクル 永遠のテーマ!

9.

HILSの分類:アシストとレコメンド 機械によるアシスト 人は外側ループ 9 機械によるレコメンド 人は内側ループ 機械からの 渋滞情報 を参考に 地図 情報 zmap アクティブ リンク http://www.jitensyatsuukin.com 目標値提示 「みちびき」より カーナ ビをも とにし た制 御 アクチュエーション

10.

強い制御と弱い制御 10 ➢ まずは人の意思決定が内側ループに含まれる例 controller operators plants request action + ー – 例:工場での機械作業,デマンドレスポンス,航空管制… ➢ “強い” 制御:管理者の制御指令を人が遵守 – 局所観測や経験・勘を活用しない – 個別の目的を考慮しない ➢ 管理者(controller)と作業者 (operator)で 目的の違いを陽に考慮した制御?

11.

強い制御と弱い制御 11 ➢ まずは人の意思決定が内側ループに含まれる例 controller operators plants + ー candidate action ➢ “弱い” 制御:管理者の制御候補から人が選択 – 人の自由意思を許したゆるい制御(管理?) – 全体の管理下で(安定性・性能保証…) 個別の目的も追求可能(最適化…) モデル化すると?

12.

モデル化:“弱い”制御問題の定式化へ ➢ 意思決定者 12 をループに含む動的システム + ー – P:プラント,K:制御器,H:意思決定者 ➢ 意思決定者のモデル化: 集合値信号から 一つの信号を選択 例) “弱い” 制御=集合値信号による制御 time

13.

“弱い” 制御の2つの解釈 13 ➢ 統一的な設定 + 手動 自動 手動 ー time 1. レコメンド:行動候補を提示して選んでもらう 2. アシスト:許容範囲を超えそうなら自動制御化 レコメンド: 人間が最終的な意思決定・行動 アシスト: 機械が最終的な意思決定・行動

14.

講演内容 ➢ 導入:Human-in-the-loopシステムの“弱い” 制御 ➢ 準備:内部モデル制御とパーシステンス ➢ 理論:“弱い” 制御の実現 ➢ 展開: – 地域のエネルギー管理システム – 航空管制管理システム 14

15.

内部モデル制御の復習 (Internal Model Control)

16.

Youla パラメトリゼーション 16 ➢ 制御対象 P には安定系を仮定 ➢ 問題:フィードバック安定化(安定性保存) – フィードバック系が安定であるような すべての制御器 K を求めよ ➢ 定理:Youla パラメトリゼーション すべての安定化制御器 は,安定な としてパラメトライズされる – 集合で書くと を用いて

17.

内部モデル制御としての解釈 17 ➢安定化制御器の構造 – ブロック線図で表現 - + + モデル P のコピーを 含んだ構造 内部モデル制御(Internal Model Control, IMC*)と呼ばれる構造 非線形でも適用化 *[Zames, TAC, 81], [Garcia & Morari, IECPDD, 82]など

18.

内部モデル制御のポイント:ループの切断 18 ➢フィードバック系の伝達関数 – 外乱 w を印加してみる – 出力とモデル出力の差 e - 入力 u と独立! – 出力 y までの入出力関係 安定性や性能保証が容易! カスケード&パラレル接続

19.

パーシステンス (粘り強さ) M. Inoue, Persistence in control systems, IEEE L-CSS, vol.2, no.3, pp.387-392, 2018

20.

概要:ロバストネス と パーシステンス ➢ 不確さを有する制御系 20 あ ➢ ロバストネス(頑健さ) – 上界既知の不確さ – 安定性や制御性能はバイナリ – 性能指標:最悪性能 安定 ➢ パーシステンス(粘り強さ)new – 大きさ未知の不確さ – 安定性や制御性能の連続性 – 性能指標:性能の劣化しにくさ 安定, 安定?

21.

問題設定:対象システムと定義 21 ➢ 対象システム(LFT表現) – ノミナルプラント 不確かさ 制御器 定義:ノミナル制御系のパーシステンス 定義:パーシステンスゲイン 解析条件を 導出!

22.

パーシステンス条件の導出 22 – (テクニカルな)仮定: ① 制御器のQ表現: あ ① 安定系 ② の存在性(パーシステンス) 下線部 ≡0 スモールゲイン定理 の極限

23.

主結果:制御系のパーシステンス ➢ 定理:パーシステンス条件 – ノミナル制御系 がパーシステント – Exact Model Matching 問題に帰着 (安定解の存在条件,e.g. [Gao & Antsaklis, TAC, 1989]) – 系全体を に関する Affine 構造に変換 ➢ 定理:パーシステンスゲイン – タイトな上限 23

24.

数値例 ➢ パーシステンス条件(再掲) – 特別解で制御器設計 ➢ 数値実験 は MatLab の rss 利用 も rss で100通り計算し ゲインを0から100まで変化 – 任意の大きさの不確さのもと 安定性と性能を確認⇒ – – 24

25.

講演内容 ➢ 導入:Human-in-the-loopシステム ➢ 準備:内部モデル制御とパーシステンス ➢ 理論:“弱い” 制御の実現 ➢ 展開: – 地域のエネルギー管理システム – 航空管制管理システム 25

26.

定式化:対象システムの記述 26 ➢ 対象システム + ー – プラント y:観測出力,u:制御入力,w:外乱 – 意思決定者 制御入力候補(集合値信号) – 制御器 集合値信号 time を出力する機構?

27.

定式化:制御器の記述 27 ➢ 制御器(集合値出力): 通常の線形動的システム 信号の“拡張器” – 拡張器 の例

28.

定式化:“弱い”制御 + ー ➢ 制御問題: の意思決定によらず,制御系全体を入出力安定とする 内部制御器 と拡張器 を求めよ – 可能であれば,制御系全体の性能保証もせよ – まずは,静的な拡張器 の種類によらない 安定化内部制御器 の設計法を提案 28

29.

“弱い”制御の実現:IMCによるアプローチ + ー ➢ 内部制御器の設計: – 内部モデル制御(IMC)構造の導入 プラントモデル の埋め込み 29

30.

“弱い”制御の実現:IMCによるアプローチ ➢ 制御系全体の構造 + ー 全体の安定性保証には, フィードバックループの切断がポイント! 外部信号のみ! 30

31.

主結果: “弱い”制御の実現 ➢ 制御系全体の構造 + ー ➢ 定理: – が入出力安定であるならば, の意思決定によらず制御系全体は入出力安定である. – 制御系全体の表現: • 拡張と意思決定に伴う不確かさ • アファイン構造⇒ の意思決定に対して制御系全体はパーシステントである. 31

32.

FAQ 32 Q.ロバスト制御なの? A.集合を扱うという意味ではイエス.ただし,不確かさは 設計可能で有効活用できるという見方は面白いはず. 解法の意味ではノー.スモールゲインのように大きさで集合 を縛ると保守的な解で使いづらい(選択自由度なし) Q.集合の自由度は空間方向のみ.現実的? A.時間に自由度がないのは(瞬時に意思決定できない) 人間相手には使えない.時間方向は今度の課題. つぎから人の嗜好を反映させた機械を想定した例を紹介.

33.

33 ここまではシステムの構造のみに着目 記述・実現によらない話 (北森先生のご講演から「ブロック線図での パラメトリゼーション」のヒント) ここからは具体的な実現を利用した話

34.

講演内容 34 ➢ 導入:Human-in-the-loopシステム ➢ 準備:内部モデル制御とパーシステンス ➢ 理論:“弱い” 制御の実現 ➢ 展開: – 地域のエネルギー管理システム – 航空管制システム CARATSオープン データより

35.

応用展開1:地域エネルギー管理システム Prof. Vijay Gupta (Univ. Notre Dame) 柴崎紗菜さん (現4年生) 35

36.

背景:多様なエネルギー源を求めて ➢ 自然エネルギーへの期待 – PV2030+, JEMAロードマップ – 不確実さゆえの諸問題 – 需給バランス保持が困難 電⼒需要 電力需要 電⼒供給 電力供給 36 ~10% ~10% 大きな変動… – 様々な対策が必要: 1.供給側の制御,2.蓄電池による需給シフト 3.需要側の制御

37.

対象:エネルギー管理システム(EMS) 37 ➢ 目標:統一的なxEMS設計論 – 地域,ビル,家のどのスケールでも共通の構造 CEMS ビル毎のエネルギー配分 HEMS 各電気機器の制御 フロア毎の空調制御 BEMS

38.

EMS:直接制御と間接制御 38 ➢ 既存の管理システム1:直接制御 – 計画停電による管理者判断での制御 ➢ 既存の管理システム2:間接制御 – デマンドレスポンスによる需要家判断での制御 (インセンティブ,プライシング,ナッジ,[P. Siano, RSER, 2014]) 節電目標 節電目標 節電達成? システム全体 に不利益 間接制御 =自由度の ある制御 直接制御 =強制的 な制御 節電 節電 個人に 不利益 節電 停電

39.

弱い制御のシステム構造 39 ➢ 人と調和するEMS構造 – 間接制御にフィードバック構造を追加 – “弱い”制御:需要家に自由を許す制御 節電目標 個人の目的 需要家の自由な 意思決定を可能に 抽象化 +FB構造 全体の目的 実節電量 フィードバックによる 高精度な 目標追従に期待

40.

問題設定:制御対象 + ー ➢ 制御対象1: – – :電気機器の集合 :節電指示, :総節電量, :EMS外の電力使用 ➢ (テクニカルな)仮定: – 安定性: – DCゲインの正規化: 40

41.

問題設定:制御対象 41 + ー ➢ 制御対象2(モデル情報は利用不可): 陰関数での静的システム 契約プランに基づく 自動機械を想定 (実人間ではない) 節電へ貢献小 節電へ貢献大 コスト コスト 節電量 安価な電力契約 節電量 高価な電力契約

42.

問題設定:弱い制御での性能保証 42 + ー ➢ 制御器(IMC+拡張器): – IMCの出力 v を資源配分(総和一定) – 系: が安定ならば, ➢ 問題:制御性能 – 定常状態での性能保証? – 過渡状態での性能保証? のモデルによらず制御系は安定 ? time ?

43.

Youlaパラメータの設計と定常特性 43 ➢ 制御器: ➢ YoulaパラメータQの設計 命題:定常状態での完全追従 収束外乱 のもと, 任意の に対して と を利用 のモデルによらず, – 1次元出力は本質的に1次元入力(v)で制御可能なはず + ? ー time =0

44.

拡張器の設計と過渡特性 44 ➢ 制御器: ➢ 拡張器の設計(t を省略) – 意思決定の自由度を制限 – 各時刻断面 命題:過渡特性 零目標値 かつL2外乱 – パーシステンスより性能劣化は1次オーダー ココ time のもと,

45.

数値実験での検証:BEMS 45 ➢ ビル全体で所望の節電量制御 – 全7フロアの空調制御で達成 – 空調モデルは simulink モデルを利用 ×7 – 多様な需要家を評価関数の違いで表現 節電へ貢献小 節電へ貢献大 コスト コスト 節電量 節電量 安価な電力契約 高価な電力契約

46.

数値実験の結果:弱い制御の効果 ➢ 高精度な節電目標の達成(管理者 46 ) DR制御(従来) 弱い制御(提案) 高精度な 目標追従 ➢ 節電の内訳 ➢ 総コスト減(需要家 安い契約 が大きな 節電 一律節電負担 よりコスト減 )

47.

応用展開2:航空管制管理システム 吉村翔君 (2018年度修了) 齊藤有紀さん (現M1学生) 47

48.

航空管制管理システム ➢ 航空管制分野の最先端研究: ◆出発から到着まで集中的な軌道管理 + ー 軌道指令 管制の提示 遵守 パイロット の選択 • 機体の詳細モデルまで考慮できない • 航空会社毎の最適化不可(燃費,最小遅れ) [1] Ministry of Land, Infrastructure, Transport and Tourism, “Study Group for …”, 2010

49.

弱い制御的アプローチ ➢ 提案する航空管制管理システム: ◆出発から到着まで階層分散的な軌道管理 + ー 管制の提示 モデル予測制御(抽象集中的) max 軌道集合の大きさ sub to 安定性:到着時間管理 制約:衝突回避,簡易モデル 狙い:全機の安全・到着管理 パイロット の選択

50.

弱い制御的アプローチ ➢ 提案する航空管制管理システム: ◆出発から到着まで階層分散的な軌道管理 + ー 管制の提示 モデル予測制御(個別分散的) min 燃費など sub to 安定性:到着時間管理 制約:衝突回避,詳細モデル 狙い:自機の燃費最小化 パイロット の選択

51.

数値例:実データへの適用 51 ➢ シミュレーション条件 ◼ Given : 航空機の到着時刻,初期位置と終端位置 ◼ Find : 5分間隔の航空機の位置 標準軌道(実際の軌道,CARATS open data) :初期位置 :目標位置 :風による変位 (北東方向に 0.4 NM/min )

52.

数値例:結果 52 ➢ シミュレーション結果 ◼ 実際の軌道 パイロットが選択する軌道 管制が提示する軌道 :初期位置 :目標位置 :風による変位 (北東方向に 0.4 NM/min ) 衝突回避を達成する軌道の集合を生成 燃費を最適化する軌道を生成

53.

数値例:結果 53 ➢ 定量的評価(燃費比較) ◼ 実データでの軌道:5.31 ◼ 提示集合の中心:5.44 ◼ パイロットの選択:4.00 減少! 実機でも期待 :初期位置 :目標位置

54.

まとめ 54 ➢ Human-in-the-loopシステムの“弱い”制御 + ー ✓モデル化と“弱い”制御の問題設定に新しさ ✓内部モデル制御(IMC)に基づく実現 ✓応用展開: 1. 地域エネルギー管理システム 2. 航空管制管理システム 詳細版はこちら: M. Inoue and V. Gupta, “Weak” control for human-in-the-loop systems, IEEE L-CSS, 2019

55.

今後の展開 55 ➢ 意思決定モデルや学習理論の導入⇒論文参照 ➢ “外部信号”型の拡張器の場合 – 今回は内部信号を拡張 • 拡張の大きさは信号 依存 – 外部信号型ならば,安定性保証,拡張の自由度大 内部信号型 ➢ まだまだ応用展開を企画・検討 外部信号型

56.

今後の展開例 農業生産管理 56

57.

農業生産管理のためのレコメンド制御 レコメンドフィードバック 行動の候補を提示 例)13-15時の間にヒータをONに Human-in-the-loop システムの制御問題 行動 気象予報 自動制御なし 温度・湿度・ CO2濃度…