>100 Views
September 13, 25
スライド概要
Fuma Hosoda, Yusuke Tamura, Yasuhisa Hirata, "Development of a Cooperative Multi-Drone System for Offshore Wind Turbine Inspection", Proceedings of the 2025 SICE Festival with Annual Conference, pp.183-188, 2025.
東北大学大学院工学研究科ロボティクス専攻 田村研究室
Development of a Cooperative Multi-Drone System for Offshore Wind Turbine Inspection Fuma HOSODA, Yusuke TAMURA, Yasuhisa HIRATA Dept. of Robotics, Tohoku University, Japan SICE Festival 2025 with Annual Conference, September 10, 2025.
Background Global shift to decarbonization - High wind speeds - Remote from residential areas - Vast ocean area available Current capacity: still limited (253MW) Government targets: - 2030: 10GW - 2050: 90GW → Rapid expansion anticipated Cumulative installed capacity [MW] Offshore wind is a key solution in Japan Offshore wind power capacity in Japan 10GW@2030 300 200 100 0 2020 2021 2022 Year 2023 2024 Japan Wind Power Association 2
Inspection & Maintenance Regular inspections required to ensure safety and efficiency Inspection methods: Visual / Non-contact: surface cracks, erosion, lightning damage Internal checks: tap testing, conductivity testing to detect hidden defects Challenges: - High-risk rope-access work at up to 200 m - Harsh offshore conditions: wind, waves, salt corrosion Need for robotic systems to enable safer, faster, and more frequent inspections 3
Related works
Rope-based systems
observe the working environment and to measure the surface geometry of the blade. A digital t
matched by point-cloud library fusion algorithms. ROS was used to calculate the reverse kinema
with a 3D surface scan and texture was matched by point-cloud library fusion algorithms. ROS
the cantilever for a simplified robot control by height and angle. Thus, using ROS enabled rea
used to calculate the reverse kinematics of the cantilever for a simplified robot control by height
the full potential of this mobile manipulator. Existing approaches for perception, localization
angle. Thus, using ROS enabled reaching the full potential of this mobile manipulator. Exis
collision-free
path planning, together with hardware independence, created a suitable environm
1.2.approaches
関連研究
for perception, localization, and collision-free path planning, together with hardw
future work.
independence, created a suitable environment for future work.
Crawler-type robots
UAV systems
/CFd_o R\fbKFhR_\o
J5h
PK rr ]`=@r;Z;SnePer ;r SnPZKr<r1fP=RPZKr
h
r
L Ah
(Jeon
et [23]
al., 2012)
Fig. 1.8 : Cleaning robot
by wire
(a) (Franko et al., 2020)
r
/RFd_o R\fbKFhR_\o
(Jung et al., 2015)
PK rr);=`]rPZe^@=fP]Zr;Z>rWP=`]rPZe^@=fP]Zr
(b)
lM@`@r Vh PerfM@reiWr]ArfN`iefrA]`=@er " Per@;=Mr`]f]`er
I@`r FZ>PZKr (b)
>;W;K@
@m^@=f@>r ;`@;er
lPfMr W;=`]r
Figure
13.
CRR
prototype.
(a)
Test
site
in
Cologne,
Germany;
Maintenance
cabin
Flexible,
flight-based
access
13.
CRR
prototype.
(a)
Test
site
in
Cologne,
Germany;
(b)
Maintenance
cabin.
Suspended
from
above
Stable,
continuous
tower
contact
fN`iefrA]`=@r
;
Z>r
Ih
PerW;eer]A
fM@r)5.
r
PZe^@=fP]ZrfM@r>@f;PS@>rWP=`]rkPei;SrPZe^@=fP]ZrPerZ@@>@> r
1PWPS;`SnrPZrfM@r=;e@r]Ar;rk@`fP=;Srl;SSrf]refP=Rrf]rfM@r
5PfMr fM@r PZA]`W;fP]Zr
H]Wrto
W;=`]r
PZe^@=fP]ZrfM@r
`]<]fr
Highly
sensitive
wind,
limited
by
surface
variability
and
- Complex, time-consuming offshore2.5. Installation
- Affected
l;SSr
fM@rW;mPWiWref;fP=rHP=fP]Z;SrA]`=@r<@fl@@ZrlM@@Ser
Processofofthe
theCRR
CRR
GP@er f]r fM@r >;W;K@ @m^@=f@>r ;`@;er ;Z>r ^@`=M@er ]Zr fM@r
2.5. Installation Process
;Z>rM@rl;SSreM]iS>r<@r<PKK@`rfM;ZrPferl@PKMf r
payload
->r5M@@Ser]ZrfM@r`]<]frW;R@rPfr^]eeP<S@rf]r
mostly visual
installation
salt corrosion
<S;>@erk@`fP=;SSn
2M@rW;mPWiWref;fP=rHP=fP]Z;SrA]`=@r=;Zr<@r=;S=iS;f@>r
W]k@r]ZrfM@rei`A;=@r]ArfM@r<S;>@e
r account and incl
The
developed
process
takes
the
door
to
enter
the
wind
turbine
tower
into
;er
;r
^`]>i=fr
]Ar
HP=fP]Z;Sr
=]@AF=P@Zfr
;Z>r
Z]`W;Sr
A]`=@er
inspections
The developed process takes the door to enter the wind
turbine tower into account and inclu
SSr fM@e@r ^`]=@ee@er =;Zr <@r >]Z@r @PfM@`r W;Zi;SSnr ]`r
;Z>r fM@r fN`iefr A]`=@r H]Wr ^`]^@SS@`er <@=]W@er Z]`W;Sr
lifting
system
to
contract
thethe
climbing
ring above the average
doordoor
height
of 3.5ofm.
two insta
;if]W;fP=;SSn
r2M@r=;W@`;r]`rfM@`W]K`;^MP=r=;W@`;r]Zr
a lifting system A]`=@er;ereM]lZrPZr_e
to
contract
climbing
height
3.5The
meters.
The
rrf]rr
9: rring above the average
;rKPW<;Sr@Z;<S@erfM@rie@`rf]rPZe^@=frfM@r>;W;K@erPZr>@^fM r
racks
including
the
crawlers
were
installed
with
an
o↵set
of
approx.
180
and
90
towards
the
d
r with
installation racks"including
the crawlers were installed
an
offset
of
approx.
180°
and
90°
tow
No
2N`]iKM]ifr<]fMrW;=`]r;Z>rWP=`]rPZe^@=fP]ZrfM@rlM]S@r
h
^`]=@eerlPSSr<@rW]`@r@AF=P@Zfr;Z>r;==i`;f@
r weight
the tower
surface.
The
CRR was
placed
with
aplaced
small with
truck
crane.
The weight
of
the
segmen
the
door
on
the
tower
surface.
The
CRR
was
a
small
truck
crane.
The
of
Existing systems face challenges forsafe,
blade inspections
ef
cient offshore r
4 w
approx. 2.5
tons.
After
the tons.
placement
installation
racks,
they were
fixedthey
withwere
belts fixed
to the
L Bh 2.5
o:+0>."<+42:o
segments
was
approx.
After of
thethe
placement
of the
installation
racks,
fi
Objective of this study To develop an offshore wind maintenance robot system that satisfies these requirements. • Conceptual design of the proposed system • Preliminary experimental evaluation 100~120 m Objective nacelle 80 m Key requirements: - Stable vertical mobility - Must withstand wind disturbances & varying surface conditions - Access to both tower and blades - Enable contact-based blade inspections - Ease of deployment - Simple operation without large-scale installation infrastructure blade tower 5
Conceptual design Key Concept - Multiple drones form a ring array around the tower - stable vertical mobility even in strong winds Inspection drones deployed from array perform blade inspections Drone array acts as mobile base station, enhancing stability for contact and non-contact inspections Inspection Procedure 1. Preparation: Drone array positioned around tower base 2. Deployment: Array ascends; inspection drones move to blade tips 3. Inspection: Visual & contact inspections during stable traversal along blade 6
Scaled Wind Turbine Model for Indoor Testing Purpose: Provide a simplified testbed for dronebased inspection 1.3 Tower Tower: Height: 2.0 m Diameter: 1.0 m (base) -> 0.8 m (top) φ0.8 Blade Blade: 2.0 Simplified rod representation 1.0 φ1.0 7
Tower Elevation System using Multiple Drones Ring array of multiple drones surrounding the tower Each drone has an Outer shell - Protects drone & absorbs contact impacts - Mechanically isolated via bearings & shafts - Ensures at least 2 contact points with tower Inter-drone connections - Linked by carbon-fiber rods - Linear bushings + constant-load springs at joints Enable extension/retraction -> ring diameter adjusts passively to tower profile bearing linear bushing 8
Control Method - Tower Elevation System Key objective - Maintain vertical mobility & structural balance - Synchronized thrust across all drones Each drone: <latexit sha1_base64="+3hLV9zO5/ubIym6y3O1QZEAzfs=">AAAChHichVE9SwNBEH2e3/EraiPYBINiIWESo1ELCQhimRijgkq4Ozdx8XJ33F0CGvwDgq0WVgoWYu8fsPEPWOQniKWCjYVzlxOxUGfZ3Zm382bfMJptSNcjarYp7R2dXd09vZG+/oHBoejwyKZr1RxdFHXLsJxtTXWFIU1R9KRniG3bEWpVM8SWdrjiv2/VheNKy9zwjmyxV1UrpixLXfUYKqyWZCkap8QipVIZilGCAvOduXQ6sxhLhkgcoeWs6D12sQ8LOmqoQsCEx74BFS6vHSRBsBnbQ4Mxhz0ZvAucIMLcGmcJzlAZPeSzwtFOiJoc+zXdgK3zLwZvh5kxTNIT3dIrPdIdPdPHr7UaQQ1fyxHfWosr7NLQ6Vjh/V9WlW8PB9+sPzV7KGMh0CpZux0gfhd6i18/vngtLK1PNqboml5Y/xU16YE7MOtv+k1erF/+oUdjLSc8nq8ZxH53NlOJ5HxiPp+OZ7PhoHowjglM8zQyyGINORS5egVnOMeF0qXMKLPKXCtVaQs5o/hhyvInuhqQvg==</latexit> Fi <latexit sha1_base64="ja6Pxls8qz0qWkzz2C70YcKLc8A=">AAACi3ichVHLSiNRED3p8T0+orMR3DQGxcXQVDSJdphFQBSXUScqPgjd7VUv6RfdnUAm+AOuBReioOBCZj8/MJv5ARd+grh0YDazmOpORFzo1OXeW3VunbqnKNO3ZRgR3aeUD13dPb19/QMfB4eGR9KjYxuhVw8sUbE82wu2TCMUtnRFJZKRLbb8QBiOaYtNs7YYv282RBBKz/0aNX2x5xiHrjyQlhExtL1cbe069c+qPK6mM6RRoZDP6Spp+XxWn40dXV/Ik65mNUosg46VvfQP7GIfHizU4UDARcS+DQMhrx1kQfAZ20OLsYA9mbwLHGOAuXXOEpxhMFrj85CjnQ7qchzXDBO2xb/YvANmqpiiO7qlJ/pF3+mB/r5Zq5XUiLU0+TbbXOFXR07G1//8l+XwHeHohfWu5ggHWEi0StbuJ0jchdXmN76dPa0X16Za03RNj6z/iu7pJ3fgNn5bN6ti7fwdPSZricfzPAP1bWdjVssWtMJqLlMqdQbVhwlMYoanMY8SVlBGhau7OMUFLpUhZU4pKl/aqUqqw/mEV6Ys/QOKIpO6</latexit> Fµ,i <latexit sha1_base64="IvEeWkN6kxdHQVoVasYYaN61N+k=">AAACiXichVFNSwJBGH7dvkwrrS5BF0mMDiGzEpt5EoTo6Ed+gInsbqMNrrvL7iiY+Ac6dulgl4IO0b0/0KU/0MGfEB0NunTo3dWICO0dZuadZ97nnWd4FFNjNidk4BFmZufmF7yLPv/S8koguLpWsI2WpdK8amiGVVJkm2pMp3nOuEZLpkXlpqLRotJIOffFNrVsZujHvGPSSlOu66zGVJkjVDqsduu7IdarBsMkGjuIxyQp9DcRo8SNMIwjbQQf4QROwQAVWtAECjpwzDWQwcZRBhEImIhVoIuYhRlz7yn0wIfcFlZRrJARbeBax1N5jOp4dnraLlvFVzScFjJDECEv5J4MyTN5IK/kc2KvrtvD0dLBXRlxqVkNXGzkPv5lNXHncPbDmqqZQw3irlaG2k0XcX6hjvjt86thLpGNdLfJLXlD/TdkQJ7wB3r7Xb3L0Gx/ih4FtTj2fHsQmpwUYlFRikqZvXAyOTbKC5uwBTvoxj4k4QjSkHdduIQ+XAt+QRTiQmJUKnjGnHX4FULqC20+ks0=</latexit> Fg,i d2 z Equation of motion: mi 2 = Fi − Fg,i − Fµ,i sin α dt <latexit sha1_base64="PCSplsvm7foEq+5QJD04uMUq/Mo=">AAACwXichVFNSxtRFD2OrbWpmlg3BTdDg+JCw0sQKwUlNCBdGm1UcDS8mbzEh/PFzEtAh/kD/gEXXbW0i9J9/0A34la78CeULhXcuPDOZKBYqd7HvHfeuffcOY9r+rYMFWMXA9rgk6dDz4af516MjI7lC+MvN0KvG1iiYXm2F2yZPBS2dEVDSWWLLT8Q3DFtsWnu15L8Zk8EofTcD+rAFzsO77iyLS2uiGoWlp2m1I12wK2otVvRD+OopXYrsb6kr1BijvaoM6vLuA8Np5tcjFC6Brf9Pd4sFFmJpaHfB+UMFJHFqlf4AQMteLDQhQMBF4qwDY6Q1jbKYPCJ20FEXEBIpnmBGDnSdqlKUAUndp/2Dt22M9ale9IzTNUW/cWmLyCljin2i31jl+yEfWe/2c1/e0Vpj8TLAZ1mXyv8Zv7o1fr1oyqHToW9v6oHPSu0sZh6leTdT5nkFVZf3zs8vlx/uzYVTbPP7A/5/8Qu2E96gdu7sr7WxdrHB/yY5CWm8ZT/HcZ9sFEplRdKC/X5YvVdNqhhTOI1Zmgab1DFe6yiQd2/4BRnONdqmtR8LeiXagOZZgJ3QotuAR2Kpuk=</latexit> gravity friction <latexit sha1_base64="ZvfKukE089LMbeIFlr5yoVQ1wug=">AAACZHichVFNSwJBGH7cvswsLQmCICQxOskYYdFJ6NLRj/wAE9ndRltcd5fdVVDpD9S16NCpICL6GV36Ax38A0F0NOjSodd1IUqqd5iZZ555n3eemZEMVbFsxnoeYWx8YnLKO+2b8c/OBYLzC3lLb5oyz8m6qptFSbS4qmg8Zyu2youGycWGpPKCVN8d7Bda3LQUXdu32wYvN8SaplQVWbSJSncqwQiLMSfCoyDuggjcSOnBWxzgEDpkNNEAhwabsAoRFrUS4mAwiCujS5xJSHH2OY7hI22TsjhliMTWaazRquSyGq0HNS1HLdMpKnWTlGFE2RO7Y332yO7ZC/v4tVbXqTHw0qZZGmq5UQmcLGXf/1U1aLZx9KX607ONKrYdrwp5NxxmcAt5qG91LvrZnUy0u8au2Sv5v2I99kA30Fpv8k2aZy7how+I/3zuUZDfiMUTsUR6M5JMul/hxTJWsU7vvYUk9pBCjs7lOMUZzj3Pgl8ICYvDVMHjakL4FsLKJ/1EigM=</latexit> z x <latexit sha1_base64="zF5C9xMWiJTA82PO9u+yJew1SN0=">AAACZHichVFNSwJBGH7cvswsLQmCICQxOskYYdFJ6NLRj/wAE9ndRltcd5fdVTLpD9S16NCpICL6GV36Ax38A0F0NOjSodd1IUqqd5iZZ555n3eemZEMVbFsxroeYWR0bHzCO+mb8k/PBIKzc3lLb5oyz8m6qptFSbS4qmg8Zyu2youGycWGpPKCVN/u7xda3LQUXdu12wYvN8SaplQVWbSJSh9WghEWY06Eh0HcBRG4kdKDt9jDPnTIaKIBDg02YRUiLGolxMFgEFdGhziTkOLscxzDR9omZXHKEImt01ijVcllNVr3a1qOWqZTVOomKcOIsid2x3rskd2zF/bxa62OU6PvpU2zNNByoxI4Wci+/6tq0Gzj4Ev1p2cbVWw6XhXybjhM/xbyQN86uuhltzLRzgq7Zq/k/4p12QPdQGu9yTdpnrmEjz4g/vO5h0F+LRZPxBLp9Ugy6X6FF4tYxiq99waS2EEKOTqX4xRnOPc8C34hJMwPUgWPqwnhWwhLn/lEigE=</latexit> <latexit sha1_base64="ddb0M2rPXmdObGQ7/zNx+h6a/+I=">AAACh3ichVG7SgNBFD2uz/iM2gg2YohYxYlIFKuIjWUeJhFMCLvrqGtmH+xOAhryA1Z2olYKFmLvD9j4AxZ+glhGsLHw7mZBVNQ7zMyZM/fcOcPVHGF4krGnLqW7p7evfyAyODQ8MjoWHZ8oenbd1XlBt4Xtbmmqx4Vh8YI0pOBbjstVUxO8pNXW/ftSg7ueYVub8tDhFVPds4xdQ1clUcWyKpx9tRqNsQQLYuYnSIYghjAydvQOZezAho46THBYkIQFVHg0tpEEg0NcBU3iXEJGcM/RwiBp65TFKUMltkbrHp22Q9ais1/TC9Q6vSJouqScQZw9shvWZg/slj2z919rNYMavpdD2rWOljvVseOp/Nu/KpN2if1P1Z+eJXaxEng1yLsTMP4v9I6+cXTazq/m4s05dsVeyP8le2L39AOr8apfZ3nu4g8/GnlpUXuS35vxExQXE8lUIpVdiqXTYaMGMI1ZzFM3lpHGBjIoUPUDnOAM50pEWVBSykonVekKNZP4EsraB5uWkf8=</latexit> α Required total thrust: Fi = (Fg,i + Fµ,i sin α) + Fp,i + (Fθ,i + Fϕ,i ) propulsive force for altitude change attitude corrections (pitch) Ring array: attitude corrections (roll) Leader-Follower architecture (for 3 drones) IMU: F1 = Fg,1 + Fµ,1 sin α + Fp,1 + Fϕ,1 determine the attitude of each drone Fϕ,1 F2 = Fg,2 + Fµ,2 sin α + Fp,1 + Fθ,2 − 2 Potentiometers & Constant-load springs: Fϕ,1 F3 = Fg,3 + Fµ,3 sin α + Fp,1 − Fθ,2 − measure coupling lengths 2 <latexit sha1_base64="QktkIPC7y40/WIvRRsMMIL65xys=">AAACZHichVHLSsNAFD2Nr1qrrRZBEKRYKq7KRKSKq4Ibl33YB9RSkjjV0DQJSVqoxR/QreLClYKI+Blu/AEX/QFBXFZw48LbNCBa1DvMzJkz99w5MyObmmo7jHV9wsjo2PiEfzIwFZyeCYVn5wq20bQUnlcMzbBKsmRzTdV53lEdjZdMi0sNWeNFub7d3y+2uGWrhr7rtE1eaUgHulpTFckhKtOuhmMswdyIDgPRAzF4kTbCt9jDPgwoaKIBDh0OYQ0SbGpliGAwiaugQ5xFSHX3OY4RIG2TsjhlSMTWaTygVdljdVr3a9quWqFTNOoWKaOIsyd2x3rskd2zF/bxa62OW6PvpU2zPNBysxo6Wci9/6tq0Ozg8Ev1p2cHNWy6XlXybrpM/xbKQN86uujltrLxzgq7Zq/k/4p12QPdQG+9KTcZnr1EgD5A/Pncw6CwlhCTiWRmPZZKeV/hxyKWsUrvvYEUdpBGns7lOMUZzn3PQlCICPODVMHnaSL4FsLSJ/tEigI=</latexit> y <latexit sha1_base64="5fjf+0gudkffcOY3QiJ9DlAP2uA=">AAAC2HichVG/SxxBFP5cY6LGxFMbwWbJoSgJx5wEFUE4EA5Lf52Kriyzm/FucH8Mu3MH53FgF2KZJkWqBFKE9GksbfIPWFimTCwVbCx8u7eQqMS8ZXa+98373nzDc5QnY83YWZfR/ajn8ZPevv6nA8+eD+aGhjfisB65ouKGXhhtOTwWngxERUvtiS0VCe47nth09heT882GiGIZBuu6qcSuz6uB3JMu10TZuUrZluaCOVm2W9VXpmybL02Cll9PEiuWgcU9VeNTHV5lJUm5pWtC8780DR6pmkyIKTuXZwWWhnkfFDOQRxbLYe47LLxBCBd1+BAIoAl74Ijp20ERDIq4XbSIiwjJ9FygjX7S1qlKUAUndp/+Vcp2MjagPOkZp2qXbvFoRaQ0Mc5O2Vd2wX6wb+wXu/5nr1baI/HSpN3paIWyB49G167+q/Jp16j9UT3oWWMPc6lXSd5VyiSvcDv6xsGHi7X51fHWBPvMzsn/J3bGTugFQePS/bIiVj8+4MchL20aT/HuMO6DjelCcaYws/I6Xyplg+rFGF5gkqYxixKWsIwKdT/GT/zGubFtHBpvjXedUqMr04zgVhjvbwAXAq3M</latexit> <latexit sha1_base64="u3TGnSojswg68f12+jV1XOrEvP4=">AAACxHichVHLShxBFD220RhjdNRNIJvGQREShmoJGgLCiDBk6WtUcKSp7pQzhdXdRT8GdNAP8AdcuFKQENz7A27cZKniJ0iWBrJx4e2eBhMl5jbVde6pe26d4jpayShm7LrD6HzR1f2y51Xv6743/QOFwaHlKEhCV1TdQAXhqsMjoaQvqrGMlVjVoeCeo8SKszmbnq80RRjJwF+Kt7RY93jdlxvS5TFRdmGmYlvmtFmxW/UPprVjvk9hzUvSpBZJv8aVbvA2rf+oaPJQN2RK2IUiK7EszKfAykERecwFhVPU8BUBXCTwIOAjJqzAEdG3BgsMmrh1tIgLCcnsXGAHvaRNqEpQBSd2k/51ytZy1qc87RllapduUbRCUpoYZRfsO7tl5+yE3bC7f/ZqZT1SL1u0O22t0PbA3tvF3/9VebTHaDyonvUcYwOfMq+SvOuMSV/htvXN7f3bxc8Lo60xdsR+kv9Dds3O6AV+85d7PC8WDp7x45CXdDzW42E8BcsTJWuyNDn/sVgu54PqwTuMYJymMYUyvmAOVer+DT9wiSujYigjMpJ2qdGRa4bxVxi795Bgphs=</latexit> <latexit sha1_base64="gUfjYFPD2lRGt3tNb4dt8pv2BkM=">AAAC3nichVFNaxRBEH2ZqInxI2u8BLwMLgmCcelZJEpAWAgEj/lwk8BOGHvG3t0m89HM9C4kw149COLRQE4KOQTv3sWLf8BDfoGIFyWCFw+pnh0RDcYaevrV63rVrylfhTLTjB2NWKPnzl8YG784cenylauTlWtT61nSSwPRDJIwSTd9nolQxqKppQ7FpkoFj/xQbPjbi+Z8oy/STCbxI72jxFbEO7Fsy4BrorxKa8mr2w/sJS/vzNn1gX3bQDfqmcTNZOzyUHX5kFZztvOrQneF5oXiju22Ux7khu3zVHWlKRvk9YFXqbIaK8I+DZwSVFHGclJ5CxdPkCBADxEEYmjCITgy+lpwwKCI20JOXEpIFucCA0yQtkdVgio4sdv071DWKtmYctMzK9QB3RLSSklpY4Z9ZIfsmH1gb9hn9vOfvfKih/GyQ7s/1ArlTT6bXvvxX1VEu0b3t+pMzxpt3C+8SvKuCsa8Ihjq+7svj9cWVmfyWfaafSH/r9gRe08viPvfg4MVsbp/hh+fvJjxOH8P4zRYr9ec+dr8yt1qo1EOahw3cBO3aBr30MBDLKNJ3d/hE77im/XYemo9t14MS62RUnMdf4S1dwIj9LA2</latexit> <latexit sha1_base64="yF2JIKVr4cGGp6pOs8SoN5AWTPY=">AAAC3nichVFNSxxBEC1Hk6gxcdVLwEuTRQlks/SsoiIIC4Lk6EdWhR2Z9Ex6dxvno5npXdBhrh6E4FHBkwEP4j33kIt/wIO/IAQvBgO55JDq2YGQSEwNPf3qdb3q15QjPRErSq96jN6+Bw8f9Q8MPh568nS4MDK6HoftyOU1N/TCaNNhMfdEwGtKKI9vyogz3/H4hrO9qM83OjyKRRi8UTuSb/msGYiGcJlCyi7Ul+wpskCW7KRZIlMpeamh5bd1YsUisJgnW6xLyxIxU/Iqq1AtrliJVHRuNSLmJprtsEi2hC5Lk0pqF4q0TLMgd4GZgyLksRwWPoIF7yAEF9rgA4cAFGIPGMT41cEEChK5LUiQixCJ7JxDCoOobWMVxwqG7Db+m5jVczbAXPeMM7WLt3i4IlQSmKCX9Ize0gt6Tr/Sn//slWQ9tJcd3J2ulkt7eP/Z2o//qnzcFbR+q+71rKABc5lXgd5lxuhXuF19Z/fwdm1+dSKZpB/oNfo/oVf0M74g6Hx3T1f46vE9fhz0osdj/j2Mu2C9UjZnyjMr08VqNR9UP4zDc3iB05iFKryGZahh90/wBW7gm/HW2DPeGwfdUqMn14zBH2Ec/QIvw7A7</latexit> 9
Inspection System using Multicopter blade Ring array of multiple drones surrounding the blade Simpli ed scaled indoor model: - Using one multicopter - Special design: blade inserted through the central square frame fi Coordinates with tower elevation system, but adjusts attitude independently Multicopter: roll & pitch (2 DOF) Coupling mechanism: rotation & extension (2 DOF) model blade (rod) simplification multi-drone system Tower system single drone 10
Control Method - Inspection System Position Estimation Kinematics-based estimation Based on the coupling mechanism’s - length … ToF distance sensor - angle … potentiometer Drone controller - Flight controller with full altitude & position control - Cascaded PID control architecture for trajectory tracking 11
Experiment 1: Tower Elevation Purpose: Verify ascent ability of drone array (3 modules, no inspection drone) Setup: - Indoor scaled wind turbine mockup - 3 interconnected drone modules - Altitude measurement with an RGB-D camera (~3 cm accuracy) Procedure: - Change target altitude multiple times - Observe ring array’s response and steadystate accuracy 12
Experiment 1: Tower Elevation Findings: - Steady-state error within ±10 cm - Meets required accuracy (±20 cm for blade-tip inspections) - Orientation MAE (mean absolute errors): roll = 0.09 rad, pitch = 0.05 rad Steady state Altitude (m) Conclusion: Accurate vertical control, suitable for inspection tasks Target Actual Time (s) 13
Experiment 2: Blade Transition Purpose: Verify transition of inspection multicopter from tower array to blade Setup: - Indoor scaled wind turbine mockup - Coupled system: 3 elevation drones + 1 inspection multicopter Procedure: - Elevation drones ascend to an hold a stable - altitude Inspection multicopter ascends and transitions to the blade region 14
Experiment 2: Blade Transition Target Actual Settling time Transition start Settling time Altitude (m) Altitude (m) Findings: - Inspection drone matched target altitude - Steady-state error of elevation system: ±10 cm - Orientation MAE: roll=0.27 rad, pitch = 0.02 rad - Slight reduction in control accuracy due to vibration during multicopter operation Conclusion: Transition feasible, but further control & hardware improvements needed Time (s) Leader drone Time (s) Inspection drone 15
Conclusions - Cooperative drone-based system for offshore wind turbine maintenance - Concept verification system for Tower Elevation & Inspection - Preliminary experimental results confirmed the system’s potential Future works - Improving control stability during blade transitions - Increasing payload capacity - Outdoor testing in wind-disturbed environments 16