>100 Views
April 06, 18
スライド概要
2018/04/06
Deep Learning JP:
http://deeplearning.jp/seminar-2/
DL輪読会資料
DEEP LEARNING JP [DL Papers] Understanding Measures of Uncertainty for Adversarial Example Detection Makoto Kawano, Keio Univ. http://deeplearning.jp/
.*/>
●
!Understanding measures of Uncertainty for
Adversarial Example Detection
●4-Lewis Smith, Yarin Gal
• Department of Engineering Science, University of Oxford
●8)92018:3'229
●15@?twitter(
• Adversarial examples627+A/;#,03
• GalB<
• =%
$" &
#D
●Gal:!MC,
• ;8<.G 7+ %"9
• ?$/4
%'4
;8<.G (0
• ?$/46-> B6 5*2AE
C
• MCC
39
• MNIST&Kaggle )=@F
• /
(1
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• =5 /3)/;>
• Softmax Variance
$&0
●Bayesian Neural Networks/MC Dropout
• @<
Bayesian Neural Network
●Experiments
• 82 !4 :"-0
• 1+%# :"-0
• -(9 76?
'.
,*
Adversarial Examples / % ●Szegedy(2013) # ●! DNN $ ● $ "
● ● [Kurakin, 2016] [Sharif, 2016]
&$'-"! [Szegedy et al., 2013] ●#( * x̃ = x + ⌘ ckx − x̃k22 + Loss(x̃, y) ●A &$'-B ● %, )+
Fast Gradient Method [Goodfellow et al., 2014]
●NN%"*0
x̃ = x + ⌘ k⌘k1 < ✏
wT x̃ = wT x + wT ⌘
●$+) "
●.-1 ,"&
●# ( ' & /1
x̃ = x + ✏sign(rx Loss(x, y))
!
Basic Iterative Method [Kurakin et al., 2016]
●FGM0&2
x̃0 = x, x̃N +1 = Clipx,✏ {x̃N + ↵sign(rx J(x̃N , ytrue ))}
●41-*)+#3!
• JPEG/$
• ',.%
"
(
Momentum Iterative Method [Dong et al., 2017] ●FGM/BIM ●NIPS ●Carlini •
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• =5 /3)/;>
• Softmax Variance
$&0
●Bayesian Neural Networks/MC Dropout
• @<
Bayesian Neural Network
●Experiments
• 82 !4 :"-0
• 1+%# :"-0
• -(9 76?
'.
,*
" ● !
?>@1N,8FG
●<J=(K+;
• /)HG
•
• IB
(K0$@M2B6
#L
• ":C4.3-*&
●EM'
D#59+;
• %7!A
D#59.
!'$(-"+#,
*
'$(-)&
%
?,69
●
aleatoric uncertainty
• ! 4 8,C9 ≒ ! . #
• ! D
#+"*%2
• +B>A;
●
p(B)=p(>)=0.5-7
epistemic uncertainty
• =5?<
:
• ! ?<
'!)$(&
• $(& 30,C@1
/
-0 &(/ #. ● x3 $y2* X H[P (y|x)] = P (y|x) log P (y|x) y2Y ● -1')!+(% I(X, Y ) = H[P (X)] = H[P (Y )] EP (y) H[P (X|Y )] EP (x) H[P (Y |X)] I(w, y|D, x) = H[p(y|x, D)] xy2* w, Ep(w|D) H[p(y|x, w)] % "y 2*
C8&"%#5-2BG
I(w, y|D, x) = H[p(y|x, D)]
Ep(w|D) H[p(y|x, w)]
●9D:E5-2BGC8&"%#7<
• 9D:,
A
)60C8&"%#7<
• MNIST17→
&"%#.
●>;?/H'3?@=
$!+F
• C8&"%#(
• 5-2BG1*C8&"%#4=
• C8&"%#(*5-2BG4=
• 5-2BG.0C8&"%#(
Softmax ˆ2 = 1 C C X j=1 1 T 0 C 1 @X = C j=1 T X (pij Iˆ = H(p̂) p̂i )2 i=1 T 1X 2 pij T i=1 ! 1 p̂2j A = X j = X j = X j = C X j 1X H(pi ) T i 1 X pij log pij T i ! p̂j log p̂j ! X 1 pij (pij 1) p̂j (p̂j 1) + . . . T i ! ! X 1 X 2 1 p̂2j pij pij + p̂j + . . . T i T i ! T X 1 p2ij p̂2j + . . . T i
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• =5 /3)/;>
• Softmax Variance
$&0
●Bayesian Neural Networks/MC Dropout
• @<
Bayesian Neural Network
●Experiments
• 82 !4 :"-0
• 1+%# :"-0
• -(9 76?
'.
,*
!
●
• 41%+ (*"
• L2,."'0#
/
X
X
ŵ = arg min
E(f (xi ; w), y) +
kWl k2
w
i
p(w)
l
●!
• $wZ )-32p(w)&
p(y|x, D) =
p(y|x, w)p(w|D)dw
w
;:3=
●;:3='-:9q,Z
• ;:")+1# LV I :=
2:9p'-/<
q✓ (w) log p(D|w)dw − DKL (q✓ kp(w))
●L4 %4.( Ki ⇥ Ki
●q ✓ = {Ml , pl |l = [1..L]}
1
l
Wl = Ml · diag([zl,j ]K
j=1 )
where zl,j ⇠ Bernoulli(pl ), l = 1..L, j = 1..Kl
※!86
pl*5
&0
,
1
$7
MC ●"! • ●$ Ep(w|D) [f w (x)] = #% T X 1 p(y|D, x) ' p(y|wi , x) T i=1 ' Z Z p(w|D)f w (x)dw q✓ (w)f w (x)dw T 1X w ' f (x), w1..T ⇠ q✓ (w) T i=1 := pM C (y|D, x) H[p(y|D, x)] ' H[pM C (y|D, x)] T 1X I(w, y|D, x) ' H[pM C (y|D, x)] − H[p(y|wi , x)] wi ⇠ q(w|D) T i=1
●Adversarial examples
• Basic Iterative Method
• Fast Gradient Method
• Momentum Iterative Method
●Measures of uncertainty
• =5 /3)/;>
• Softmax Variance
$&0
●Bayesian Neural Networks/MC Dropout
• @<
Bayesian Neural Network
●Experiments
• 82 !4 :"-0
• 1+%# :"-0
• -(9 76?
'.
,*
). 0$' & -,.!3 *1+ 2 % ( & & /#4. 0$' &" -,.!3 *1+
● ●
● ●
● ●
● ●
●VAE
●VAE
A60.*7)
●$.<:C4=PR
• IB,D92H
●'Q
1+
E
L-9@E
• ON?T /8NMK3SG
• KL!&5(JF;@
• >NME
' %"' # E
!
"8;@
(#
●MNIST (#(&
●KaggleASSIRA"8?>
• "8;@
• =3.4
9<
$17
●ResNet50%)0DropoutFC
●526'A!*ROC/ :
•
4B6NN PE/dropout PE/dropout MI
●526'A-,BIM/FGM/MIM
+
3=@C!
"542-
●'*$&*,/
●%!( DA176?056><
.8
;
• B:*")#False-Positive 9 AUC +
($4+-
●>%/14
F@H29#
()
• %EDA5 )!
• ,*3@H=C:7G ?
• 8&0.AB6
•(
+
<Dropout1;"'
)
●C>D6NNNEL*85IK?
• C>D6N> '$"*8K?2
• C>D6NM<B49
'$"
●#'!%"@FC>D6N1.J
• /BODNN,
• :+A)=
●0-C>D6NJ
• H3M
&
G(7;,
C>D6N,