>100 Views
July 06, 18
スライド概要
2018/07/02
Deep Learning JP:
http://deeplearning.jp/hacks/
DL輪読会資料
【CVPR2018論文紹介 】 Sparse, Smart Contours to Represent and Edit Images 2018/07/02 DLHacks Otsubo
Topic1 : Image Encoding and Decoding (Code = Sparse Contour + α) 1
Topic2 : Image Editing 2
Info • Sparse, Smart Contours to Represent and Edit Image [CVPR2018] - https://contour2im.github.io/ - https://arxiv.org/abs/1712.08232 3
選んだ理由 • Contourからの画像復元とか無理では? あまりにもill-posed → 少量の情報(勾配)を追加するだけで実現 • Encoding Decodingにおいて 人間が理解,編集しやすく 機械が復元しやすいCodeを模索 • イケメンになりたい 4
Encoder Overview 1. Extract Edge [1] 2. Get Contour (remove less than 10pixel-connected) 3. Compute addiConal channel [1] Structured forests for fast edge detecCon [Dollar, ICCV2013] 5
Encoder Additional Channel 1. Color - (Rleft, Gleft, Bleft, Rright, Gright, Bright ) 2. Gradient 編集に最適(reconstructionでは弱い) - (Rdx, Gdx, Bdx, Rdy, Gdy, Bdy ) 3. Learned Feature - Semantic Segmentationのように学習 6
Decoder Overview 7
Decoder Train (1/2) L1 Loss 8
Decoder Train (2/2) L1 Loss + adv loss (a) 9
Reconstruction Result 10
Reconstruction Result FaceNet Style Transfer "! = Texture 11
Reconstruction Result ReconstrucConGradient 12
Editing 13
Online Demo https://contours2im.appspot.com/ 14